
  

AFRL-IF-RS-TR-2005-22  

Final Technical Report 
February 2005 
 
 
 
 
 
 
SPECIFICATION-CARRYING SOFTWARE: 
EVOLVING SPECIFICATIONS FOR DYNAMIC 
SYSTEM COMPOSITION 
  
Kestrel Institute 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. K506 
  
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-22 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:              /s/ 
 

JAMES M. NAGY 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:                 /s/ 
 

JAMES A. COLLINS, Acting Chief 
Advanced Computing Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank)
 

2. REPORT DATE
FEBRUARY 2005

3. REPORT TYPE AND DATES COVERED 
Final  Sep 00 – May 04 

4. TITLE AND SUBTITLE 
SPECIFICATION-CARRYING SOFTWARE: EVOLVING SPECIFICATIONS 
FOR DYNAMIC SYSTEM COMPOSITION 

6. AUTHOR(S) 
Matthias Anlauff, 
Dusko Pavlovic, 
and Douglas R. Smith  

5.  FUNDING NUMBERS 
C     - F30602-00-C-0209 
PE   - 62301E  
PR   - DASA 
TA   -  00 
WU  - 05 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Kestrel Institute 
3260 Hillview Avenue 
Palo Alto California 94304 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFT 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-22 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  James M. Nagy/IFT/(315) 330-3173/ James.Nagy@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words)
EPOXI (Evolutionary Programming Over Explicit Interfaces) builds on the advanced mathematical foundation to enable 
the design and evolution of large-scale, heterogeneous, distributed, time-critical systems. The guiding philosophy of 
EPOXI is refinement of requirement specifications into code that is correct by construction. EPOXI emphasizes the 
support for design operations that establish or preserve required properties of the target system software. Refinement 
and coordination of changes to the software system were by means of formal change specifications, propagation of 
constraints through an architecture, gauges to measure component compliance and synthesis of glue-code to assure 
compliance/interoperability. 

15. NUMBER OF PAGES
65

14. SUBJECT TERMS  
Dynamic Software Assembly, Run-Time Software System Adaptation, Specification-
Carrying Software, Spec Ware, EPOXI, Software Gauges 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18 
298-102 



Contents

1 Executive Summary 1

2 Summary of Results 2

3 Foundations for System Composition 5

3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Evolving Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 The Category of Guarded Interpretations . . . . . . . . . . . . . . . . . . . . . . 7

3.4 The Slice Category of Guarded Interpretations . . . . . . . . . . . . . . . . . . . 9

3.5 Especs Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.6 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Parameterization: Modeling the Environment . . . . . . . . . . . . . . . . . . . . 25

3.9 Timed Especs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Cleaning-up after Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Especs and Software Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Examples 30

4.1 Sensor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Espec: Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Composed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Mission Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Composing the Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.4 Propagating Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.5 Glue-Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Concluding remarks and future work 58

i

goodelle
Text Box
References                                                                                                                                                            59



List of Figures 
 

Figure 1:   Naturailty Condition of a Refinement………………………………………..18 
Figure 2:   Composition of a Garbage Maker and a Garbage Collector…………………26 
Figure 3:   Mission Controller…………………………………………………………....41 
Figure 4:   Radar Unit……………………………………………………………………43 
Figure 5:   Communication Channel……………………………………………………..46 
Figure 6:   Composing the Components and Connector…………………………………49 
Figure 7:   Colimit of Figure 6…………………………………………………………...51 
Figure 8:   Propagation of Timing Constraints…………………………………………..55 
Figure 9:   Mission Controller with Minimun Acceptable Request Separation Times…..56 
 

 ii



1 Executive Summary

This report describes our research on the assured composability of software systems. Our
project is based on the concept of specification-carrying software in which software artifacts
carry with them all the information necessary to support composability and evolution. Without
a representation of the properties and behavioral characteristics of a software component and its
assumptions about its operating environment, it is impossible to insert a system into a context
with any assurance.

We have developed a comprehensive mathematically well-founded framework for system spec-
ification, composition, development, and evolution. To support precise means for assessing
composability of a system at design-time, our framework allows formal specification of (1)
logical properties, (2) behavioral properties, (3) timing properties, and (4) environmental re-
quirements. Specifications distinguish between the services offered by a system from the services
required from its environment. Composability of a system requires that the system’s environ-
ment provides the services that the system requires. A category of behavioral specifications
provides the technical foundations of our approach. Specifications are the objects of the cate-
gory and morphisms express part-whole relationships, refinement between machines, and the
binding of required services to actual services. Composition is effected by the colimit operation,
which is both semantically precise and scalably computable in near-linear time.

To assess composability, we developed techniques for formalizing (1) the compliance of a soft-
ware artifact with its specification at several levels of granularity, and (2) the compliance of
a component’s environment with the services, behaviors, and properties that the component
requires. The primary measure of composability is the existence of a morphism from each
required-service specification of a system to the offered-service specifications of its environ-
ment. We also developed several techniques for ensuring composability in the presence of
semantic mismatches between parts of a system. When there is a gap in the logical properties
at an interface, we developed techniques for generating glue code when translation is possible.
When there are race-condition-like timing problems between components, we developed con-
straint propagation techniques that eliminate uncoordinated behaviors while preserving logical
properties.

The framework is partially implemented in the EPOXI system (Evolutionary Programming
Over Explicit Interfaces). A variety of examples have been worked to explore the Epoxi con-
cepts, including (1) a dynamic distributed sensor network from which Epoxi generated code
running on a collection of Berkeley motes (demonstrated at Dasada Demo Days), (2) an avionic
mission controller that is detailed in Section 4.2, (3) a concurrent garbage collection system [14],
and (4) an embedded plant monitoring System [21].

The concepts of the Epoxi project have provided a foundation for a variety of other Kestrel
projects, including projects on domain-specific generation of complex resource management
systems, protocol composition and synthesis, embedded system design, and robustification of
large-scale Java systems. To date, eight publications and two patent applications have directly
resulted from this project.

1



2 Summary of Results

We briefly list the highlights of the research and development performed under this contract.

• Evolving Specifications (Especs) – We developed the concept of specification-carrying code
via the formalism of evolving specifications [15, 17]. Especs formally specify the allowed
behaviors of a process by means of logical/temporal properties, and by explicit modeling
of states and transitions.

• Espec Refinement – We developed the concept of one Espec being a refinement of (or
implementing) another Espec and this concept is defined by means of an Espec morphism.
The morphism prescribes how logical properties translate, and how the concrete machine
simulates the abstract machine.

• Espec Composition – We developed the concept of Espec composition by means of the
colimit operation in the category of Especs. The colimit is efficiently computable and
produces the Espec that specifies the (concurrent) composition of an arbitrary number of
Especs (processes, machines, components).

• Espec Parameters – When modeling a component it is usually important to model its
assumptions about its environment. A key insight of this project is that the environment
model corresponds exactly to an Espec parameter to the component. That is, a compo-
nent’s requirements on its environment is specified by a parameter Espec. The guarantee
that a component correctly provides its advertised services depends on the specification of
its services together with the expectation that its environment implements the parameter
Espec. Another aspect of parameters is that they refine contravariantly.

• System Composition – With the previous concepts we have, for the first time, a precise
uniform foundation for system specification and composition. Each component is speci-
fied by Especs together with its parametric specification of environmental expectations.
The interconnection of components is provided by a diagram that includes refinements
from each component’s parameter to its environment. The parameter is the gauge of
compositionality. The measure of compliance is based on the correctness condition of a
refinement – that all logical properties are preserved, and that the environment simulates
the expected behaviors specified in the parameter.

• Timing Properties – We developed an extension of Especs that enables the specification of
aspects of the physical world, including timing and other physical quantities. The result is
a foundation for hybrid modeling of embedded systems. After composition it is necessary
to refine the system to eliminate ill-timed behaviors. We developed a means for translating
a composed Espec into a constraint satisfaction problem whose solution prescribes how
to tighten the Espec to only allow coordinated behaviors between components.

• Glue Code – The services offered by one component may be expressed in slightly different
data structures than the corresponding offered services of another component. To enable
composition in such cases, we developed techniques for automatically generating glue code
from the formal specification of the semantics of two services.

2



• Epoxi – We implemented Especs in the Epoxi system and performed a variety of demon-
strations with it. For example, we demonstrated the ability to generate a dynamic ar-
chitecture using Especs. A set of nodes (small low-cost, low power radio-linked com-
puter/sensors called motes) are scattered randomly in the field. The basic system ar-
chitecture comprises sensor components and radio connectors from each sensor to one
of several data fusion components. When we attempt to refine the basic architecture to
the motes, we find that the radio link has low reliability. To cope with such a fail-silent
component/connector, a standard approach is to impose a heartbeat probe and a clock-
based gauge that decides when the component/connector has failed. We formalized this
heartbeat gauge architecture as an Espec diagram and formally composed it with the
basic architecture to produce a dynamic adaptive sensor-net system. The Espec com-
piler translates the system to C and then into machine code for motes. The running
system dynamically forms a network to flow sense data to the data fusion components,
and dynamically adapts the network when a connector is gauged to have failed.

We briefly list the technical transition paths that we have been pursuing as an outgrowth of
this project.

• Planware – The Especs foundation has been influential in a variety of ways. The Planware
project for AFRL/Rome and the Electronic Systems Command, Hanscom AFB, uses
Especs as the basis for precisely modeling scheduling problems. Users build Espec-based
models of the tasks and resources of a scheduling application, then Planware automatically
generates a branch-and-propagate algorithm. Under DARPA ANTS funding, Kestrel,
Air Force Research Lab/Wright-Patterson AFB, and Lockheed are applying Planware
to the modeling and generation of schedulers for handling time-critical targeting in Air
Tasking Orders as part of the TBMCS (Theater Battle Management System). The current
Planware model for this problem generates about 90,000 lines of CommonLisp (equivalent
to about 270,000 lines of C) in a matter of minutes. The generated scheduler produces in
a few minutes an air tasking order that is currently a full-time job for scores of officers
in an Air Operations Center [3]. Furthermore, Kestrel and NSA have been discussing
applying Planware to satellite scheduling.

• Composition of Protocols – A current project uses Especs in exploring dynamic game
theory, system interaction, and formal analysis of protocols. Dramatic progress on the
specification of protocols, a calculus for reasoning about them, and transformations for
protocol composition are under active development [5]. Several new protocols with desir-
able properties have been derived within the formalism.

Here is a list of publications and patent applications that have directly resulted from this
project.

1. Dusko Pavlovic and Douglas R. Smith, Composition and Refinement of Behavioral Spec-
ifications, Proceedings of the Sixteenth International Conference on Automated Software
Engineering, IEEE Computer Society Press, Coronado Island, CA, 2001, 157-165.

3



2. Dusko Pavlovic and Douglas R. Smith, System Construction via Evolving Specifications,
in Complex and Dynamic Systems Architectures (CDSA 2001), Brisbane, Australia, 2001.

3. Cordell Green, Dusko Pavlovic, and Douglas R. Smith, Software Productivity through Au-
tomation and Design Knowledge, Software Design and Productivity Workshop, Nashville
TN, Dec 2001.

4. Dusko Pavlovic and Douglas R. Smith, Guarded Transitions in Evolving Specifications,
in Proceedings of 9th International Conference on Algebraic Methodology And Software
Technology (AMAST 2002), Eds. H. Kirchner and C. Ringeissen, Springer-Verlag LNCS
2422, September 9-13, 2002, St. Gilles les Bains, Reunion Island, France, 411-425.

5. Matthias Anlauff, Dusko Pavlovic, and Douglas R. Smith, Composition and Refinement
of Evolving Specifications, invited paper in Proceedings of Workshop on Evolutionary
Formal Software Development, July 2002, Copenhagen, Denmark.

6. Dusko Pavlovic and Douglas R. Smith, Software Development by Refinement, in Formal
Methods at the Crossroads: From Panacea to Foundational Support, UNU/IIST 10th
Anniversary Colloquium, Eds: B. Aichernig and T. Maibaum, Springer-Verlag LNCS
2757, 2003, 267-286.

7. Dusko Pavlovic, Peter Pepper, Douglas R. Smith, Colimits for Concurrent Collectors,
Verification: Theory and Practice: Festschrift for Zohar Manna, N. Dershowitz (Ed.),
Springer-Verlag LNCS 2772, 2003, 568–597.

8. Dusko Pavlovic and Douglas R. Smith, Evolving Specifications, in preparation, 2004.

9. D. Pavlovic, D.R. Smith, and S. Fitzpatrick, U.S. Patent Application 09/836582: Method
and System for Self-Adaptive Code.

10. D. Pavlovic, D.R. Smith, and J. Liu, U.S. Patent Application 09/665179: Method and
Apparatus for Determining Colimits of Hereditary Diagrams.

4



3 Foundations for System Composition

Originally, state machines were introduced and studied (by Turing, Moore, Mealy, and many
others) as abstract, mathematical models of computers. More recently, though, software en-
gineering tasks reached the levels where practical reasoning in terms of state machines has
become indispensable: designing reactive, hybrid, embedded systems seems unthinkable with-
out the various state modeling tools and languages, like Esterel, or Statecharts. Verifying high
assurance systems by model checking is based on such state machine models. Moreover, one
could argue that the whole discipline of object oriented programming is essentially a method
for efficient management of state in software constructs.

However, there seems to be a conceptual gap between state machines as theoretical versus prac-
tical devices. A notable effort towards bridging this gap are Gurevich’s Abstract State Machines
[8]: on one hand, they are a foundational paradigm of computation, explicitly compared with
Turing machines; on the other hand, they have been used to present practically useful program-
ming languages, capturing semantical features of C, Java, and others. However, the absence
of powerful typing and structuring (abstraction, encapsulation, composition. . . ) mechanisms
makes them unsuitable for development and management of large software systems.

We wish to investigate a representation of state machines in a framework for large-scale software
specification development (“from-specs-to-code”). Previous work at Kestrel Institute has imple-
mented the Specware/Designware framework for the development of functional programs that
is based on a category of higher-order logical specifications, composition by colimit, and refine-
ment by diagram morphisms [24, 20]. The current work builds on and extends this framework
with behavioral specifications (Especs), representing state machines as diagrams of specifica-
tions, and again using composition by colimit and refinement by diagram morphism. Related
approaches to representing behavior in terms of a category of specifications include [6, 10].

The goal is to build a practical software development tool, geared towards large, complex
systems, with reactive, distributed, hybrid, embedded features, and with high assurance, per-
formance, reliability, or security requirements, all on a clean and simple semantical foundation.

3.1 Specifications

A specification is a finite presentation of a theory. The signature of a specification provides the
vocabulary for describing objects, operations, and properties in some domain of interest, and
the axioms constrain the meaning of the symbols. The theory of the domain is the closure of
the axioms under the rules of inference. Although the examples in this paper are drawn from
first-order theories, all of the constructions are institution-independent [7], mainly depending
on existence of colimits and some limits.

A specification morphism (or interpretation translates the language of one specification into the
language of another specification, preserving the property of provability, so that any theorem
in the source specification remains a theorem under translation. Formally, a specification mor-
phism m : T → T ′ is given by a map from the sort and operator symbols of the domain spec
T to the symbols of the codomain spec T ′. An interpretation is the slightly more general case

5



where a symbol may map to an expression. When there is no point in distinguishing them we
use the generic term morphism. To be a morphism also requires that every axiom of T trans-
lates to a theorem of T ′. It then follows that a morphism translates theorems of the domain
specification to theorems of the codomain.

Starting point: category of specs Why do we begin from a specification framework?
Because that is the formal, semantical embodiment of the actual engineering practice: the
development from specs to code, and the evolution of code and specs together.

Why do we arrange the specification framework in a category? Specifications are just rep-
resentations of the design knowledge they formalize, just like programs are just particular
representations of the computations that run when they are executed. Each piece of software
can be represented by many specifications, just like it can be implemented by many different
programs. — The different specifications of the same structure are connected by the interpre-
tations. They perform often complex tasks of renaming signatures, while preserving the truth.
Specifications and morphisms form a category.

3.2 Evolving Specifications

There are four key ideas underlying our representation of state machines as evolving specifica-
tions (Especs). Together they reveal an intimate connection between behavior and the category
of logical specifications. The first three are explicit in Abstract State Machines [8].

1. A state is a model – A state of computation can be viewed as a snapshot of the abstract
computer performing the computation. The state has a set of named stores with values
that have certain properties.

2. A state transition is a finite model change – A transition rewrites the stored values in the
state.

3. An abstract state is a theory – Not all properties of a state are relevant, and it is common
to group states into abstract states that are models of a theory. The theory provides the
structure (sorts, variables, operations), plus the axioms that describe common properties
(i.e. invariants).

4. An abstract transition is a theory morphism – Just as a class of states/models may be
described by a theory, a class of transitions may be described by an appropriate theory
morphism. As a simple case, consider the correctness of an assignment statement relative
to a precondition P and a postcondition Q; i.e. a Hoare triple P {x := e} Q. If we
consider the initial and final states as characterized by theories thypre and thypost with
theorems P and Q respectively, then the triple is valid iff Q[e/x] is a theorem in thypre.
That is, the triple is valid iff the symbol map { x �→ e} induces a interpretation from
thypost to thypre. Note that interpretation goes in the opposite direction from the state
transition.

6



More generally, a transition may have a guard that controls its application. Correspond-
ingly we define (in Section 3.3) the notion of a guarded interpretation, which is essentially
an interpretation into the extension of the codomain theory with the guard as an extra
axiom. Specs with guarded interpretations form a category Spec�.

The basic idea of Especs is to use specifications as state descriptions, and to use guarded inter-
pretations to represent transitions between state descriptions.

The idea that abstract states and abstract transitions correspond to specs and guarded inter-
pretations suggests that state machines are diagrams over Specop

� .

Remark. What is static about state? Note that the term “abstract state”, although consistent
with current convention, is nevertheless misleading. While a (concrete) state as a first-order
structure is truly static, our intention for abstract states is much broader. What is static
about an abstract state is the signature and axioms. A great deal of state change can happen
within a single abstract state. Looking ahead, an abstract state/specification can naturally
include continuous variables that model physical processes, together with constraints on their
values and derivatives. The “static” theory then denotes a mixture of continuous flow and
discrete variable change. Again, what is static about abstract state is the invariant structure
and properties expressed by its logical specification. This view lets us naturally extend the
expressiveness of Especs to hybrid systems, and further to nonfunctional properties of a system
(such as timing and constraints on resource utilization). In this sense an Espec is really an
activity machine (with nodes representing activities), but we continue to use the tradition
term “state machine”. However, abstract states in Especs are typically named with gerunds,
suggesting that they correspond to activities. In this view abstract transitions also have more
import – they correspond to a change of invariant mathematical structure (hence “evolving
specifications”).

The specification of each state description corresponds to its local structure and properties/invariants.
The specification common to all state descriptions specifies the global structure and invariants
of the system. Any structure that is common to all states that a computation can reach is
formalized as a (global) specification; the common structure includes variables and their sorts,
as well as axioms (global invariants) and operations (global constants).

3.3 The Category of Guarded Interpretations

The foundation for evolving specifications is the category of specifications with guarded inter-
pretations as morphisms.

Let K and L be two states and K
Φ�f �� L a transition, consisting of the guard, i.e. a predicate

Φ, and the action, i.e. update f . Intuitively, it can be understood as the command if Φ then

f , executed at the state K, and leading into the state L by f whenever the condition Φ is
satisfied. More precisely, it is executed in two steps:

7



• at the state K, the condition Φ is evaluated;

• if it is satisfied, the action f is performed, leading to the state L.

The action f is assumed to rewrite the signature of the state description L in terms of the signa-
ture of the state description K. Such rewriting can be viewed as a set of assignments, possibly
to higher-order variables. Such assignments are often called signature updates, especially in the
Abstract State Machines community.

A transition K
Φ�f�� L thus boils down to an interpretation L

f−→ K ∧Γ, where states K and L

are identified with logical theories describing them.

The meaning of this is as follows. A computation is in state K if the program variables,
operations and relations form a model of the state description of K. If we are thus given a
model of K, and an interpretation L −→ K, then we can of course assign to the signature of L

meanings along this interpretation, and thus reinterpret the model of K as a model of L, and
arrive at the state L.

However, if such transition is only to be made when the guard Φ is satisfied, then we have

K � K & Φ
f← L

where we abuse notation in letting K ∧Φ denote the spec obtained by adding axiom Φ to spec
K (assuming Φ ∈ LK). The left-hand side interpretation is the trivial, identity map on the
signature of K, just adjoining to its theory the axiom Φ.

Opspans like this will be our general representation of guarded transitions, and will be denoted

K
Φ�f

�� M

Sequential composition of guarded transitions is given by the rule

K
Φ�f�� L L

Γ�g �� M

K
Φ∧f(Γ)�f ·g

�� M

or diagrammatically

K

����

L

����

f

�������������������� M
g

���������������

K ∧Φ

����

L ∧ Γ

f�����������������

K ∧ Φ ∧ f(Γ)

The category Spec� of specifications and guarded transitions will have specifications as its
objects, while the hom-sets will be

Spec�(K,L) = {(Φ � f) |Φ ∈ LK and f ∈ Spec(L,K ∧ Φ)}

8



Remark. The construction of Spec� is an instance of a more general construction in which
morphisms are treated as a combination of arrows from a factorization system [17]. Here the
guard can be treated as an abstract monic and the interpretation can be treated as an abstract
epi.

Remark. The computational work of this transition takes place in state K. The guard is
evaluated in K, as are the computations of the right-hand sides of the parallel assignments. On
the other hand, the evaluation of which variables to update (e.g. calculating the array offset in
A[i] := e) is charged to state L.

3.4 The Slice Category of Guarded Interpretations

In general, the state descriptions of a machine are not unrelated specs, but they share vo-
cabulary, definitions, and properties that capture whatever may be known about the global
invariants and the intent of the program. The universe from which the states are drawn is thus
the category A/Spec�, of all specs inheriting global spec A, rather than just Spec�.

The abstract states K and L thus come with the morphisms/interpretations k : A −→ K and
� : A −→ L of the globally visible signature and the invariants specified in A. 1

Definition 3.1 For a fixed spec A, the category extA = A/Spec� consists of

objects: extensions A
k−→ K of the spec A in the category Spec;

arrows: given A
k−→ K and A

�−→ L, a morphism (Φ � f) : k −→ � is a guarded transition

A
k

����
��

��
�

�

���
��

��
��

K
Φ�f

�� L

which means A
k

�����������
�

�����������

K �� �� K ∧ Φ L
f		

The hom-sets are thus

extA(k, �) = {(Φ � f) |Φ ∈ LK and f ∈ Spec(L,K ∧ Φ) and k · i = � · f}

where i : K −→ K ∧Φ is the identity signature map, just strengthening the theory K.
1While Spec is fibered over Lang by the functor mapping each spec K to its language LK , the category A/Spec

is fibered over LA/Lang, mapping each interpretation A −→ K to the underlying language interpretation.

9



Remark. Note that the construction of Spec� is just a fibered form of adjoining objects as
guards: for each language Σ the semilattice 〈|SpecΣ|,∧,�〉 of all theories over Σ is adjoined to
the fiber SpecΣ as the monoid of guards.

The construction extA = A/Spec� is, on the other hand, a fibered form of the slightly more
general construction. The category A/Spec is fibered over the category LA/Lang of languages
interpreting LA. But this time, each fiber (A/Spec)σ over σ : LA −→ Σ is assigned not its own
monoid of objects, but again just the semilattice of theories over Σ.

3.5 Especs Defined

The concept of Espec is now formally defined.

Definition 3.2 A graph s consists of two sets edges and nodes, and two functions, doms and
cods from edges to nodes.

A shape is a graph s that is

• reflexive, in the sense that there is a function ids : nodes −→ edges, which assigns a
distinguished loop to each node;

• distinguished initial node i, and a set O of final nodes o;

Together with the morphisms preserving all displayed structure, shapes form the category Shape.

Definition 3.3 An evolving spec, or Espec A consists of

• a logical theory specA, and

• a state machine progA, presented by

– a reflexive graph shapeA;

– a morphism of reflexive graphs stA : shapeA −→ extA

Notation and terminology. If n is a node of shapeA, the codomain of stA(n) is written as
modeA(n). If u : m → n is an edge of shapeA, its image stAu is usually written as stepAu :
modeAm �� modeAn .

As a extA-arrow, step(u) consists of two pieces of data:

• a formula guard(u) in the language of mode(m), and

• an interpretation assign(u) : mode(n) −→ mode(m) ∧ guard(u)

In summary,

10



• mode assigns to each shape-node n a state description mode(n), which comes with an
interpretation stA(n) : specA −→ mode(n);

• step assigns to each shape-edge u : m→ n a step (or transition) step(u) : mode(m) �� mode(n) ,
keeping specA invariant, in the sense that

specA

st(m)



����������
st(n)

��										

mode(m)
step(u)

�� mode(n)

i.e. specA

st(m)

����������������
st(n)

��















mode(m)

�� ����������������
mode(n)

assign(u)���������������

guard(u) & mode(m)

Espec Syntax and Examples

Here is a brief introduction to the syntax of Especs and Espec morphisms. By way of illustration,
we specify the problem of computing the greatest-common-divisor of two positive numbers.

Semantically, an Espec denotes a set of behaviors. This, together with the hierarchical nature
of Especs - modes may be Especs, implies that each mode denotes a set of behaviors. This
semantic is consistent with the restriction of refinement to modes (there is no notion of transition
refinement in Especs).

Especs can be viewed as proper extensions of ordinary higher-order specifications. So we first
review the general syntax of a Specware spec (details may be found in the documentation on
Specware at www.specware.org). The general form of a spec is

S = spec
imports
sorts
ops
axioms
theorems

end-spec

where

imports: A spec may import any number of specifications.

sorts: A spec may introduce and define any number of sort (type) symbols.

ops: A spec may introduce and define any number of operation symbols.

axioms: The axioms are expressed in terms of the imported and introduced sorts and opera-
tions, using the built-in syntax of higher-order logic.

11



theorems: The theorems are consequences of the axioms.

For example, GCD-base is a simple specification that imports a specification of the Integers,
defines the (sub)sort of positive integers, introduces a new function GCD and constraints its
possible meanings by the gcd-spec axiom. Finally, a simple theorem is presented, which follows
from gcd-spec and integer theory. The purpose of this spec is to specify the GCD problem
without giving a computable definition of it.

GCD-base = espec
import Integer
sort Pos = (Integer|positive?)
def positive?(i:Integer):boolean = (i > 0)
op gcd : Pos, Pos -> Pos
axiom gcd-spec is ;; this axiom specifies the gcd problem

gcd(x,y) = z
=> (divides(z,x) & divides(z,y)

& forall(w:Pos)(divides(w,x) & divides(w,y) => w <= z))
theorem gcd(x,x) = x

end-espec

The general form of an Espec is

M = espec
parameter
value
import
assumes
ensures

vars
ops
axioms

events
procs
modes
steps

end-espec

where the imports, sorts, ops, axioms/theorems clauses are the same as in specs, and

parameter: An Espec may have any number of parameters, which are themselves Especs. The
role of parameters is discussed more fully in Section 3.8.

12



value: The name and type of the output value.

assumes: The assumes clause is a logical constraint on the variables in the parameters that
specifies properties of the initial state of any behavior of the Espec (sometimes called
the precondition).

ensures: The ensures clause is a logical constraint on the variables in the parameters to-
gether with the value that specifies properties of the final state of any behavior of
the Espec relative to values of variables in the initial state (sometimes called the
postcondition).

vars: The vars are variables (symbols that may have different associated values in different
states).

events: The events represent synchronized transitions with the environment. An event may
represent message-passing, control signals, or simply a named transition. Unlike
procedures, the controlling entity of an event does not expect or wait for a return
of control. An event has a type that constrains its content.

procs: The procs are Especs that represent local procedures (or methods).

modes: The modes are Especs that specify abstract states of the Especs.

steps: The steps specify abstract transitions of the Especs. They correspond to guarded
interpretations.

For example, GCD-0 is a simple Espec that specifies a procedure for computing GCD. It imports
GCD-base and takes two data parameters (note that the parameter is a trivial Espec, having
only vars and no modes or steps). GCD-0 introduces the output variable Z and specifies that in
any behavior of GCD-0, the value of Z in the final state will be the greatest common divisor of
the input values X-in and Y-in. Finally, GCD-0 introduces two modes and a step that specify
the abstract behavior of the computation - the single transition has the effect of storing the gcd
of X-in and Y-in into Z. Note that this is still an underspecified computation, since the gcd

function has no definition. We will refine this simple Espec to a computable Espec later. The
naming of modes and steps is needed to support the refinement of Especs.

GCD-0 = espec
import GCD-base
parameters {X-in: Pos, Y-in : Pos}
value Z : Pos
assumes true
ensures Z = gcd(X-in,Y-in)

One = init mode end-mode

Two = fin mode ;; this mode extends the global spec with a local axiom
axiom Z = gcd(X-in,Y-in)

end-mode

13



Out = step : One -> Two ;; transition from mode One to mode Two
Z := gcd(X-in,Y-in)

end-step
end-espec

A slightly more compact presentation folds each step into the mode from which it originates.

GCD-0 = espec
import GCD-base
parameters {X-in: Pos, Y-in : Pos}
value Z : Pos
assumes true
ensures Z = gcd(X-in,Y-in)

One = init mode
Out = step -> Two

Z := gcd(X-in,Y-in)
end-step

end-mode

Two = fin mode
axiom Z = gcd(X-in,Y-in)

end-mode

end-espec

14



Espec GCD-1, below, refines GCD-0. The state machine expresses the classical GCD algorithm,
which might have been generated by a design tactic. GCD-1 extends the logical spec of GCD-0
with two local variables X and Y. Essentially, the refinement adds a new mode and two looping
transitions that preserve the key loop invariant of the program: X and Y change under the
transitions, but always so that their GCD is the same as the GCD of the input values X-in and
Y-in.

GCD-1 = espec
import GCD-base
parameters {X-in: Pos, Y-in : Pos}
var X,Y : Pos

One = init mode end-mode

Loop = mode
axiom gcd(X-in,Y-in) = gcd(X,Y) ;; loop invariant

end-mode

Two = mode
axiom Z = X
axiom X = Y
axiom Z = gcd(X-in,Y-in)

end-mode

initialize = step : One -> Loop
X := X-in
Y := Y-in

end-step

Loop1 = step : Loop -> Loop
X>Y -> X := X - Y

end-step

Loop2 = step : Loop -> Loop
Y>X -> Y := Y - X

end-step

Out = step : Loop -> Two
X=Y -> Z := X

end-step
end-espec

15



or more compactly

GCD-1 = espec
import GCD-base
parameters {X-in: Pos, Y-in : Pos}
var X,Y : Pos

One = init mode
step : One -> Loop

X := X-in
Y := Y-in
end-step

end-mode

Loop = mode
axiom gcd(X-in,Y-in) = gcd(X,Y) ;; loop invariant
Loop1 : step -> Loop

X>Y -> X := X - Y
end-step

Loop2 : Loop -> Loop
Y>X -> Y := Y - X
end-step

Out : Loop -> Two
X=Y -> Z := X
end-step

end-mode

Two = mode
axiom Z = X
axiom X = Y
axiom Z = gcd(X-in,Y-in)

end-mode
end-espec

It is straightforward to check that GCD-1 is internally consistent; e.g. to show that Loop1

corresponds to a translation, we must show

Loop, X > Y � gcd(X−in, Y−in) = gcd(X − Y, Y )

The syntax, semantics, and correctness conditions of refinements are addressed in Section 4.

16



3.6 Refinements

We now define the concept of a refinement (or morphism) between two Especs. A characteristic
of Espec refinements is that logical structure and behavior refine contravariantly. If A refines
to B, then the spec of A refines to the spec of B by an interpretation, but the program (or state
machine) of B maps into the program of A, simulating it. So a refinement preserves the logical
structure of A in B and preserves the behavior of B in A.

Definition 3.4 Given Especs A and B, a refinement f : A −→ B consists of:

A

f

��

= 〈specA,

fspec

��

shapeA
stA �� extop

A 〉


�
fmode���

���

B = 〈specB , shapeB stB
��

fshape

�


extop
B 〉

f∗
spec

�


• a structure map (or interpretation) fspec

• a behavior map (or simulation) fprog = 〈fshape, fmode〉, where

– fshape is a reflexive graph morphism, preserving the initial and the final nodes,

– fmode is specA-preserving natural transformation; this naturality and preservation
amount to the commutativity of Figure 1 for every v : k → � in shapeB (see notes
below).

– Together, fspec and fprog must also satisfy the guard condition: for every edge v :
k → � in shapeB and edge u = fshape(v) in shapeA and every edge u = fshape(k)→ n

in shapeA,
fspec(guardA(u)) ⇐⇒

∨
fshape(v)=u

dom(v)=k

guardB(v)

• The inverse-image functor f∗
spec acts on the category of extensions: f∗

spec(st(n)) = st(n)◦
fspec.

Clearly, Especs and refinements form a category, which we shall denote ESpec.

Intuition. The last diagram tells that the components of fmode coherently extend fspec from the
global specs specA and specB to their extensions modeA and modeB . Just like specB refines specA

because it proves all formulas in the image fspec[specA], each modeB(n) refines modeA(fshape(n))
because it proves all formulas in the image fmode(n)[modeA(fshape(n))]. The structural refine-
ment is thus extended from fspec : specA −→ specB to fmode : modeA −→ modeB . Its naturality
ensures that each transition stepB(v) of B extends the transition stepA(fshape(v)) of A.

The guard condition ensures that every behavior of B maps to a behavior of A. There are
stronger versions of the guard condition that also ensure that B simulates all of A’s behaviors,
and weaker versions that support reduction of nondeterminism.

17



modeA(fshape(k)) � � �� modeA(fshape(k)) ∧ guardA (fshape(v)) modeA(fshape(�))
assignA(fshape(v))
		

stepA(fshape(v))

��

specA
stA(fshape(k))

��






















































stA(fshape(�))

����������������

fspec

��
specBstB(k)

������������������������������������������������������������
stB(�)

��















modeB(k) �� ��
��

fmode(k)

modeB(k) ∧ guardB(v)
��

fmode(k)

modeB(�)
��

fmode(�)

assignB(v)
		

stepB(v)

��

Figure 1: Naturality Condition of a Refinement

Proposition: Every behavior of B is a behavior of A.

Proof: Intuitively, the commutativity requirement of the natural transformation implies the
commutativity of the underlying models/states. From this it follows that for every state that B

can be in and enabled transition, there is a corresponding state of A such that the corresponding
transition of A is enabled. Coinductively then, every behavior of B maps to a behavior of A.

But is every transition of A extended in B? Yes, insofar as its guard is ever enabled. This is
ensured by the guard condition, which, in our context, says that the behavior stB can simulate
stA. More precisely, the inverse graph of fshape is a simulation in the usual sense of concurrency
theory: if fshape(k) = m and there is a transition u out of m, enabled in a given run, in the
sense that guardA(u) is true, then there must be an enabled transition v out of k in B, with
fshape(v) = u. The other way around, whenever some v, fshape(v) = u is enabled, u must be
enabled.

Note that the guard condition implies that fshape must be surjective, at least as far as B can
tell through fspec: namely, f−1

shape(u) can be empty only if the guard guardA(u), interpreted by
B as fspec(guardA(u)), is always false.

Note that every mode has the identity self-transition, sometimes called a stuttering step, whose
action is minimal. The guard of the identity is true. The guard condition requires that the
refinement of the identity must never deadlock.

The presentation of an Espec refinement R from A to B has the following general form:

R = morphism A -> B
parameter parameter-morphism
commonspec commonspec-morphism
structure structure-map

18



where

parameter: The parameter-morphism is a contravariant morphism from the parameter of B
to the parameter of A.

commonspec: The commonspec-morphism is a covariant specification morphism from the com-
mon spec of A to the common spec of B.

structure: The structure-map is a contravariant map from the modes of B to the modes of
A and the steps of B to the steps of A. The structure-map induces the natural
transformation of R.

Example. Let us return to the example in Section 2. The refinement from GCD-0 to GCD-1

can be written

GCD-ref = morphism GCD-0 -> GCD-1
parameter {X_in +-> X_in,

Y_in +-> Y_in}
commonspec {gcd +-> gcd,

Z +-> Z }
structure {One +-> One,

Loop +-> One,
Two +-> Two,
Initialize +-> Id(One), % Identity arrow on a Mode
Loop1 +-> Id(One),
Loop2 +-> Id(One),
Out +-> Out }

where +-> is the ascii form of the maps-to symbol (�→).

Three of the steps map to the identity step on mode One in GCD-0 because they only change
the local variables X and Y, corresponding to identity steps in GCD-0 (these are sometimes called
stuttering steps). Checking the components of the natural transformation is straightforward –
the proof obligations include showing that fmode(k) is a translation for all nodes k in shapeA;
e.g. that the axioms of mode One in GCD-0 translate to theorems in mode Loop in GCD-1.
Checking the guard condition is also straightforward; e.g. for step Loop1 in GCD-1, the guard
condition instantiates to

Loop � X > Y =⇒ true

where the consequent is the guard on step idOne in GCD-0.

Epoxi does not require the statement of identity symbol translations, so GCD-ref can be pre-
sented more compactly as

GCD-ref = morphism GCD-0 -> GCD-1
parameter {}

19



commonspec {}
structure {Loop +-> One,

Initialize +-> Id(One),
Loop1 +-> Id(One),
Loop2 +-> Id(One) }

3.7 Colimits

The ordinary comma categories are well known [11, ch. II.6]. Given the functors G : X −→ C

and H : Y −→ C the comma category2 G/H will consist of the triples 〈X,GX
c−→ HY, Y 〉

as objects, where X is an object of X , Y an object of Y, and c an arrow of C. Given two
such objects, A and B, an arrow f : A −→ B is a pair 〈fX , fY 〉, making the following square
commute

A

f

��

= 〈XA,

fX

��

GXA
cA �� HYA, YA〉

fY

��
B = 〈XB , GXB cB

��
��

GfX

HYB,
��

HfY

YB〉
The lax comma category G//H can be made when C is a 2-category. The commutativity
requirement on the square in the above diagram can then be relaxed to commutativity up to a
2-cell.

Towards a representation of ESpec, consider the functors

• D : Shape −→ Cat, mapping each shape to the free category over the underlying reflexive
graph, and

• M : Specop −→ Cat, mapping each spec to the category (spec/Spec)op, and each spec
morphism to the functor induced by precomposition.3

By projecting away the guards, both from Especs and from their refinements, we get the functor
ESpec −→ D//M .

The point is that this functor creates colimits. And both limits and colimits in comma cate-
gories, even lax, are constructed in a standard way. A diagram in G/H, of course, consists of
a diagram in X and corresponding one in Y — projected into C by G and H respectively, and
connected by the suitable commutativity conditions there. The (co)limit in G/H is obtained
by separately constructing the two (co)limits in X and Y, and by projecting and connecting
them up in C. In the lax case, only this last step gets more complicated.

The colimits in ESpec will thus be constructed from the colimits in Spec, the limits in Shape,
plus some wiring to connect them in Cat.

2The notation G/H is not standard, but is justified by the fact that the comma construction subsumes the
slice categories, besides the arrow categories and their derivatives.

3This functor can be viewed as a generalization of the functor Mod : Specop −→ Cat.

20



First of all, recall that all colimits can be derived from the initial object and the pushouts. Of
course, the initial Espec consists of the empty spec, and a one-state-one-step program (with
the state represented by the empty spec).

To describe the pushout of Especs, suppose we are given a span of Especs

specAfspec

���������� gspec

������������

specB specC

shapeA

stA

��

shapeB

fshape ��������

stB

��

shapeC

gshape�����������

stC

��

fmode

�� ��
����
�� gmode

��
��

��
��

��

extop
A

extop
B

f∗
spec

�����������
extop

C

g∗spec

��������������

To compute the pushout, we first compute the corresponding pushout of specs and the pullback
of shapes.

specAfspec

������������� gspec

������������������������

specB

sspec ������������������������ specC

tspec�������������

specD

shapeA

shapeB

fshape ������������
shapeC

gshape
�����������������������

shapeD
tshape

������������sshape

�����������������������

It is easy to see that M : Specop −→ Cat maps the upper pushout to the pullback at the bottom
of the induced cube.

shapeA

stA

��

shapeB

fshape ������

stB

��

shapeC

gshape�����������

stC

��

shapeD
tshape

������sshape

�����������

fmode
�� �
����
� gmode

��
��
�
��
�

extop
A

extop
B

f∗
spec

������
extop

C

g∗spec

�������������

extop
D

t∗spec

������
s∗spec

�������������

If fmode and gmode were identities, i.e. if the two back faces of the cube were commutative, the
fact that the bottom face is a pullback would induce a functor stD : shapeD −→ (specD/Spec)op.

21



Since they are not, this functor must be constructed taking fmode and gmode into account. The
image stD(k) of a node k of shapeD is now obtained as the unique arrow from the pushout at
the top to the pushout at the bottom of the following cube.

specA

stA(�)

��

specB
��

fspec ����������

stB(i)

��

specC
��

gspec
����������������������

stC(j)

��

specD

stD(k)

���
�
�
�
�
�
�
�
�

�� tspec

������������sspec

����������������������

modeA(�)

modeB(i)
��

fmode(i) ������
modeC(j)

��
gmode(j)�����������

�������

modeD(k)
��
tmode(k)

��������smode(k)

������������������

Since shapeD is the pullback of fshape and gshape, the node k corresponds to a pair 〈i, j〉 of the
nodes from shapeB and shapeC , identified in shapeA as the node � = fshape(i) = gshape(j). Of
course, i = sshape(k) and j = tshape(k).

This construction gives the node part modeD of stD : shapeD −→ extop
D , as well as the com-

ponents of smode and tmode. The arrow part stepD is induced by the fact that the bottom of
the cube is a pushout, using the naturality of fmode and gmode. This also yields the naturality
of smode and tmode. Finally we construct the guards for the edges of shapeD. Given an edge
w : k → k′ of shapeD define

guardD(w) = sspec(guardB(sshape(w)))

∧ tspec(guardC(tshape(w)))

This completes the construction of the colimits in the lax comma category D//M . In order to
complete the construction of the colimits in ESpec, we need to supply the guards for the edges
of shapeD, and show that s and t satisfy the guard condition.

Given an edge w : k → k′ of shapeD define

guardD(w) = sspec(guardB(sshape(w))) ∧ tspec(guardc(tshape(w)))

We need to prove that, for all u : i −→ i′ in shapeB, all v : j −→ j′ in shapeC , and all nodes k

in shapeD, such that sshape(k) = i and tshape(k) = j, holds

modeD(k) � sspec(guardB(u)) ⇐⇒
∨

sshape(w)=u

dom(w)=i

guardD(w)

modeD(k) � tspec(guardC(v)) ⇐⇒
∨

tshape(w)=v

dom(w)=j

guardD(w)

22



Proving just one of these conditions will do, since they are symmetric; so let us take the first
one. Unfolding the definition of guardD, it becomes

modeD(k) � sspec(guardB(u)) ⇐⇒∨
sshape(w)=u

dom(w)=k

(sspec(guardB(u)) ∧ tspec(guardc(tshape(w)))

which is clearly equivalent to

modeD(k) � sspec(guardB(u)) =⇒
∨

sshape(w)=u

dom(w)=k

tspec(guardC(tshape(w))

This can be proved in three steps:

modeD(k) � sspec(guardB(u)) =⇒ sspec ◦ fspec(guardA(fshape(u)) (1)

modeD(k) � sspec(guardB(u)) =⇒ tspec

∨
gshape(v)=fshape(u)

dom(v)=j

guardC(v) (2)

modeD(k) � sspec(guardB(u)) =⇒ tspec

∨
sshape(w)=u

dom(w)=k

guardC(tshape(w)) (3)

(1) follows from the guard condition for f

modeB(i) � fspec(guardA(fshape(u)) ⇐⇒
∨

fshape(ũ)=fshape(u)

dom(ũ)=i

guardB(ũ)

and the logical fact that that guardB(u) surely implies the disjunction on the right hand side,
since it comes about as one of the disjuncts. Of course, the fact that sspec preserves logical
operations is also used.

(2) follows from (1), by replacing sspec ◦ fspec with tspec ◦ gspec, which is equal, and then using
the guard condition for g

modeC(j) � gspec(guardA(fshape(u)) ⇐⇒
∨

gshape(v)=fshape(u)

dom(v)=j

guardC(v)

Finally, (2) becomes (3) by noticing that tshape induces the bijection between the index sets of
the two disjunctions. Indeed, by the definition of shapeD as a pullback, the elements of

{v ∈ shapeC | gshape(v) = fshape(u) ∧ dom(v) = j}

23



are exactly the tshape-images of

{w ∈ shapeD | sshape(w) = u ∧ dom(w) = k}

(3) is, of course, just what we needed to prove, since tspec surely preserves disjunction.

This completes the pushout construction.

Explanation. The pushout of specs is clear enough: the languages get joined together, and
identified along the common part. The pullback of shapes produces the parallel composition of
the behaviors they present. This is particularly easy to see for products, i.e. pullbacks over the
final Espec. For example, a product of any shape with the two-node shape • −→ • consists of
the cylinder, with the two copies of shape, and each two of their corresponding nodes connected
by an edge. A product with the three-node shape • −→ • −→ • consists of three copies,
similarly connected.

In general, the product of any two shapes shapeB and shapeC can be envisaged by putting a
copy Sn of shapeB at each node n of shapeC , and then expanding each edge m

u→ n of shapeC

into a cylinder from Sm to Sn, i.e. a set of parallel edges, connecting the corresponding nodes.
The initial node is the pair of the initial nodes of shapeB and shapeC , whereas the final nodes
are the pairs of final nodes.

In the resulting shape shapeB × shapeC , each edge either comes from a copy of shapeB placed
on a node of shapeC , or from an edge of shapeC copied to connect two particular copies of
a node of shapeB; so it is either in the form 〈node of shapeC , edge of shapeB〉, or in the form
〈node of shapeB , edge of shapeC〉. A moment of thought shows that each path through shapeB×
shapeC corresponds to a shuffle of a path through shapeB , and a path through shapeC ; and that
every such path comes about as a unique path in shapeB×shapeC . In this sense, shapeB×shapeC

is the parallel composition of shapeB and shapeC .

A pullback extracts a part of such product, identified by a pair of shape morphisms shapeB −→
shapeA ←− shapeC . Since the initial node must be preserved, the initial node of the product
will surely be contained in the pullback. The set of final nodes may be empty in general.

For each pair of nodes 〈i, j〉, contained in the pullback shapeD as the node k, the corresponding
state description is constructed as the pushout modeD(k) of modeB(i) and modeC(j) on the
above diagram. As a theory, this state description may be inconsistent. Indeed, if B and
C are not independent, but have a shared part A, their parallel composition may be globally
inconsistent, in the sense that specD may be inconsistent; or some of the pairs of states that may
come about in shuffling their computation paths may be inconsistent, which makes such paths
computationally impossible. Inference tools can be used to eliminate inconsistent/unreachable
modes from the colimit Espec.

Despite the seeming complexity and mathematical depth in the description of the colimit, the
actual computation is relatively simple. There are just three steps:

• pullback of shapes;

• pushout of specs; (the guards can be directly computed at this point)

24



• the pushout extensions of modes and steps.

The first two steps are simple and well known. The third one amounts to computing a pushout
of theories for each mode, and using the universality of each such pushout to generate the steps
from it – Epoxi’s colimit algorithm returns both the cocone and a generator of interpretations
that witness the universality of the apex.

3.8 Parameterization: Modeling the Environment

In system design, the need arises to specify the properties and behavior of a component’s
environment, including required behaviors, invariant properties, and required services. The
correctness of the component’s behavior follows from the assumption that the environment
behaves as specified, together with the internal structure and behavior of the component. The
concept of parameterized Especs neatly satisfies this need.

A parameter to an Espec is an Espec that models the environment – what behavior and prop-
erties the component expects of the environment, and what services it requires. The binding of
a parameter to the environment is given by an Espec morphism – the environment is expected
to be a refinement of the parameter. The environment will typically have much more structure
and behavior than is specified by the parameter, but it must have at least as much as is required
for the correct operation of the component.

A parameterized Espec is presented as an import morphism from the parameter to the body
Espec with special properties. Intuitively, the semantics of a parameter requires that the
behavior of the component consistently extends the behavior of environment – no behaviors of
the environment allowed by the parameter can be ruled out by restrictions in the body of the
component. In [13], parameterized higher-order logic specifications (as in the Specware system)
are treated as coherent functors. Parameters are refined contravariantly (cf [23]).

Two other properties of parameterized specs are important ([23, 13] and there is good reason
to believe that analogous properties hold for Especs, although we have not yet proved them.

1. Parameterized specs are closed under composition

2. Parameterized specs are stable under pushout – that is, if the pushout of A→ B ← C is
D and A→ B is a parameterized spec, then C ← D is also a parameterized spec.

In the body of a parameterized Espec (a p-Espec), the prog may include both offered and
required events and procedure calls. To distinguish these, we label offered events and procedures
as input items because the component promises to accept any external request for them. For
example, an offered event may correspond to a message being sent to the component; i.e.
an input from the environment. Dually, we label required events and procedures as output
items because the environment of the component is required to accept any internally-generated
request for them. For example, a required event may correspond to a message being sent to the
environment; i.e. an output from the component to the environment. Required/output events

25



Theorem (Safety):  
No accessible node is ever collected

�n. � acc(G,n) 
� CollectNode(n)

import Directed-Rooted-Graph

�a,k. acc(G,k) 
� ChangeArc(a,k)

import Directed-Rooted-Graph

� acc(G,n) ��acc(G’,n) acc(G,n) � acc(G’,n)

Garbage Collector Garbage Maker

Figure 2: Composition of a Garbage Maker and a Garbage Collector

and procedures are introduced in the parameter of a p-Espec, and offered/input events and
procedures are introduced in the body of a p-Espec. The binding morphism from a parameter
to the environment must be polarity-changing in the sense that output items must map to input
items in the environment, and vice-versa. In contrast, an ordinary morphism between Especs
must be polarity-preserving.

Figure 2 shows the composition of an abstract garbage maker and a garbage collector [14]. Note
that both components have required behaviors of the environment that are presented in their
parameter. These behaviors are invariants that each component requires the other to preserve
in its own actions. The proper functioning of each component depends on the other fulfilling its
obligation to satisfy the corresponding invariant. In particular, the garbage collector expects
that the garbage maker preserves the property of inaccessibility (acc(G,n) means that node n is
accessible in directed graph G which represents the nodes and pointers in memory). Conversely,
the garbage maker expects that the garbage collector preserves the accessibility of nodes. The
lesson here is that environmental requirements can be more than just availability of procedures.
We will see in Section 4 that the formalism also supports specification of constraints on the
sequencing of actions of several components.

26



3.9 Timed Especs

Several of our examples required the composition and coordination of timing constraints. We
found that the simplest approach was to add clocks as primitive concepts to Especs [2]. Vari-
ables can have type Clock which means that their value increases continuously with derivative
one relative to real time. Clock variables can be assigned to, so c := 0 resets clock c to 0.
The predicates = and <= are used to compare clocks and time constants (usually integers in
this report). Clock variables and constraints refine and compose just like other variables and
constraints in the category of Especs.

3.10 Cleaning-up after Composition

The outcome of composing a system via colimit is a new system specification, a parameterized
Espec, that specifies the required behaviors of its environment as well as system (internal)
properties, behaviors, and services. A collection of components are composable if there is
some environment that satisfies the parameter specification; i.e. if the resulting parameter is
consistent and the body is consistent.

When we compute the colimit, of an architecture, we take a kind of Cartesian product of the
possible behaviors of each component and connector. Not all combinations of these behaviors are
compatible. For example, two simultaneous but different assignments to the same variable lead
to an inconsistent state. More generally, the colimit may contain modes that are inconsistent,
and therefore unreachable. Therefore, after composition (i.e. computing the colimit), it is
necessary to analyze the composition for error states and to eliminate them. The result is
a refinement of the composition that has fewer (or no) behaviors leading to blocked states
(nonfinal states from which there is no exit). Typical examples of error states are:

• unreachable modes – including inconsistent modes

• no enabled transitions in a given state

• an enabled transition causes an error – e.g. divide by zero

• refusal of one component to accept an input from another

• uncoordinated timing conditions

The avionic mission control system in Section 4.2 works through the clean-up process for the
composition of timed systems. Essentially, generic timing constraints on modes and transitions
are used to set up a definite constraint system that can be solved in linear time. The result is to
tighten temporal guards in order to preclude joint behaviors that lead to error states (typically
that one component sends a message that another is not yet prepared to receive).

Each type of error state can be eliminated by special means. In this project we performed
preliminary investigation of (1) elimination of inconsistent modes by means of theorem-proving
to detect inconsistency, and (2) timing dysfunctions that are handled by constraint propagation.
Ongoing projects at Kestrel are addressing the other kinds of error states.

27



3.11 Especs and Software Architectures

In this section we compare and contrast the Espec formalism with the classical concept of
software architecture.

The Espec formalism provides fresh insight into the classical concept of software architecture,
which is based on the distinction between components and connectors. A system is modeled as
a collection of components that are interconnected via connectors that mediate the interaction
between components. While the distinction of component and connector may be useful concep-
tually, it is not fundamental. Especs can naturally represent the behavior both of components
and connectors. In the following we use the term component to denote both components and
connectors.

As emphasized earlier, there is a fundamental and pervasive distinction between a component
or system, and its environment [1]. With respect to specifying a component or connector, this
manifests itself in distinguishing two kinds of services: its offered and required services. A com-
ponent offers certain services to its environment and these offered services can be encapsulated
by an Espec that refines to the component itself. This provided-service-Espec is usually called
the interface, and the component is an implementation (i.e. a refinement) of it. Dually, a com-
ponent may require certain services of its environment. This requirement can be encapsulated
by a parameter Espec (See Section 3.8).

The offered and required service Especs of a component come with a warranty: if the envi-
ronment provides services that satisfy a component’s required services, then the component
guarantees to provide its offered services.

The service specs provide a way to decompose the verification of a system into (i) correctness
of each component (i.e. establishing its warranty), and (ii) interconnecting the components via
a diagram of Especs.

The distinction of service specs also gives rise to several composition possibilities via the kind
of interconnection:

• Pushout of a parametric Espec with an offered Espec – To show that a component can be
correctly composed into a system, we must provide a binding morphism from its require-
ment/parameter Espec to the offered service Espec of its environment, which shows how
the component’s environment satisfies the requirement. The pushout operation generates
the component instantiated with the particular services provided by the environment.
The required and offered services are identified in the colimit.

• Pushout of offered Especs – Using a pushout to compose the offered Especs (aka interfaces)
of two components has the effect of generating the offered spec/interface of the composed
components.

In terms of software architecture, the ports of a component (respectively the roles of a connec-
tor) seem to refer both to required and provided services without distinction. Yet the Espec

28



formalism reveals subtle semantic distinctions between them - a parameterized Espec is mor-
phism with special properties [13] (essentially the body cannot introduce new properties of the
environment and it cannot restrict the behavior of the environment) whereas the morphism from
the offered-services-Espec is a general refinement morphism. Another distinction is revealed by
refinement – when a component specification is refined, it’s input items (offered services) may
increase, but its output items (required services) may only decrease. This property is call con-
travariance. Intuitively it can be understood as follows: when a system is specified to exhibit
property P in environments of type E, then an implementation must satisfy P and perhaps other
properties (i.e. strengthening P), and it must operate in at least the environments satisfying
E and perhaps others (i.e. weakening E). So the environment model weakens under refinement
and the system specification strengthens.

Consequently the Espec formalism provides fresh insight into a necessary elaboration or refine-
ment of software architecture theory. This insight stems from our concerns about (1) precise
semantics and correctness of composition, and (2) the polarity between system and environment.
Furthermore, since Especs are formulated with refinement in mind, it is natural to compose a
system at very abstract levels and conceive of refining both the connectors and the components.
This helps improve the clarity of system at the highest level, and to help a reader understand
the details of the final system structure by introducing information in a staged manner, via
refinements.

29



4 Examples

To illustrate the abstract concepts in the previous section, we present several examples in detail
here.

1. Distributed Sensor Network – The first example has been demonstrated at project work-
shops and shows the composition of a dynamic architecture for a distributed sensor net-
work. Epoxi automatically translates the Espec architecture to running code on the UC
Berkeley motes [9]. The sensor network dynamically adapts itself in response to faults in
its underlying communication grid (short-distance radio links).

2. Avionic Mission Controller – The second example focuses on system specification and
design-time composability/compliance checking. The problem is to specify a avionic mis-
sion controller together with its requirements on external components that provide asyn-
chronous communication with a radar unit. The problem places particular emphasis on
specifying end-to-end timing requirements in the architecture and enforcing compliance
at design-time.

3. Distributed Garbage Collection – A third example, which can be found in [14], illustrates
the use of parameters to specify behavioral and logical invariants on the environment. In
this case there are two components interacting on a shared memory - a garbage maker and
a garbage collector. Each requires certain behavioral properties of the other in order that
each can provide its service. This provides a concise example of how to precisely specify
and compose multi-agent systems that both compete and cooperate with each other.

4. Plant Monitoring System – A fourth example, which can be found in [21], explores the
elaboration of Especs with syntax and semantics for specifying the physical world. The
problem is to monitor a steel milling operation and to provide a warning within a given
time bound when conditions fall outside a safe region. The issue is specifying the physical
world activities together with the sensors that measure physical world quantities and
output bits that can be treated computationally, and to model the inherent uncertainty
of such measurements and the ensuing effects of that uncertainty upon computations.

Each of these examples treat a different mix of issues related to system specification and com-
posability issues. The Espec formalism provides the framework for addressing the question of
what happens when the system cannot be proven at design-time to be composable; e.g. some
properties are only knowable at run-time. This case is revealed by failure to verify the mor-
phisms that interconnect components in the architecture. Knowing which properties fail to
hold allows us to generate probes and gauges that verify them at run-time, signaling the need
for special handling when they do not hold.

30



4.1 Sensor Nodes

4.1.1 Problem Description

We are given a set of low-cost, low-power autonomous hardware devices (called “Motes”), which
are equipped with sensors and are able to communicate with each other via radio signals [9].
They may be scattered in the field in order to track movements.

The basic system architecture comprises sensor components and radio connectors from each
sensor to one of several data fusion components. When we attempt to refine the basic architec-
ture to the motes, we find that the radio link has low reliability. To cope with such a fail-silent
component/connector, a standard approach is to impose a heartbeat probe and a clock-based
gauge that decides when the component/connector has failed. We formalized this heartbeat
gauge architecture as an Espec diagram and formally composed it with the basic architecture
to produce a dynamic adaptive sensor-net system. The Espec compiler translates the system
to C and then into machine code for motes. The running system dynamically forms a network
to flow sense data to the data fusion components, and dynamically adapts the network when a
connector is gauged to have failed.

The Especs presented here specify the code that is running on each of these motes, including
an abstraction of their tracking, communication, and self-organization behaviors. The model
assumes that the environment of the mote transmits a stream of events which are interpreted
and processed by the mote, e.g. receive message (over a radio channel), clock tick, initialize.
While changing from one state to the other, the Espec is able to perform updates of the locally
defined variables as well as to invoke commands, e.g. send message, clock initialization.

The example will be presented in three steps: first the Espec for specifying the target tracking
functionality of the application is given. In this model, we have abstracted from the fact that
the communication links between the sensor node are unstable, because of the unstable nature
of radio signals. Next, an Espec covering the detection and repair of broken communication
links between sensor nodes is given. That is, we present a domain-independent abstract Espec
for a heartbeat probe and a clock-based gauge that decides when the component/connector has
failed. This heartbeat gauge architecture is then formally composed with the basic architecture
to produce a dynamic adaptive sensor-net system. The Espec compiler translates the system
to C and then into machine code for motes. The running system dynamically forms a network
to flow sense data to the data fusion components, and dynamically adapts the network when a
connector is gauged to have failed.

4.1.2 Espec: Target Tracking

The following Espec specifies the simple target tracking state machine running on each sensor
node. Whenever the environment (i.e. the underlying operating system) transmits an event,
the parameter cmd is set to the value of the specific event. In this simplified case, the detection
of a radio message on channel 12 is regarded as a signal from the target. The task of a sensor
node is to count number of target signals during the time between two clock ticks and send

31



the result to the data collector node (abbreviated as Daco throughout the example). The data
collector is another node that is also equipped with radio communication facilities.

The initial state is Initialize which automatically transitions to the Receive mode and
initializes various variables. In Receive mode, the mote waits for an event/command which
causes a transition to Dispatch. In Dispatchmode, the value of cmd is checked. If the operating
system is in its initialization phase, it will issue an Init event, causing the Espec to reinitialize
its local variables. In case of an ClockEvent (a clock tick) the state transition causes the sensor
node to reset its targetCnt after it has been sent to the data collector node.

This graphical representation of the above state machine can be transformed to a textual version
as follows:

ReceiveCommands
= proc % models the environment sending a stream of events/cmds

import Common
var cmd:Event
A = initial mode

step -> A is !cmd end-step
end-mode

end-proc

32



SensorMote
= proc % obtain Common from the parameter

parameters ReceiveCommands

var CurrentDaco : NodeId
var targetCnt : Nat
sendToDaco = proc parameters {CurrentDaco : NodeId,

targetCnt : Nat}
end-proc

Initialize = initial mode
step -> Receive is
clockInit(Send, 2), % clock to xmit 2 ticks/sec to ch Send
targetCnt := 0,
CurrentDaco := 0 % should acquire this value

end-step
end-mode

Receive = mode
GetCmd = step -> Dispatch is ?cmd end-step
end-mode

Dispatch = mode
ResetStep = step -> Receive is
if cmd matches Init
then targetCnt := 0
end-step

DetectTarget = step -> Receive is
if cmd matches ReceiveMsgCh12 _ % ch12?msg
then targetCnt := targetCnt + 1
end-step

SendSensorData = step -> Receive is
if cmd matches ClockEvent(Send)
then sendToDaco(CurrentDaco,targetCnt),

targetCnt := 0
end-step

end-mode
end-proc

As mentioned earlier, this state machine doesn’t take into account the unstable nature of radio
signals, which are used as communication means between the sensor nodes and the data collector
node(s).

The following Espec specifies the algorithm for detecting and reacting to failures of the commu-
nication links between nodes. The principle of this algorithm is that the nodes listen to “heart
beats” sent out from their neighbor nodes. If for a certain amount of time the heart beat of a

33



neighbor has not been detected, then the link to this node is cut off. The state machine uses
the nodes initialize, Receive, and Dispatch as the previous did. We want to point out,
that the model given below is independent from the target tracking model:

HeartBeatAdaption
= proc

parameters ReceiveCommands
var msg : string

var GotHeartBeat : Boolean
var CurrentDaco : NodeId
var AlternateDaco : NodeId
var HaveAlternateLink : Boolean

Initialize = initial mode
step -> Receive is
clockInit(HB,1), % clock to xmit 2 ticks/sec to ch HB
HaveAlternateLink := false

end-step
end-mode

Receive = mode
GetCmd = step -> Dispatch is ?cmd end-step
end-mode

Dispatch = mode
ProcessHeartBeat: step -> Receive is
if cmd matches ReceiveMsgCh8 msg
then GotHeartBeat := true
end-step

Reconnect = step -> Receive is
if (cmd matches ClockEvent(HB)) & ~GotHeartBeat & HaveAlternateLink
then CurrentDaco := AlternateDaco,

GotHeartBeat := false,
HaveAlternateLink := false

end-step
UpdateAlternate = step -> Receive is
if cmd matches ReceiveMsgCh7(msg)
then AlternateDaco := msg,

HaveAlternateLink := true
end-step

end-mode
end-proc

34



4.1.3 Composed System

The effect of composing the SensorMote model and the FaultAdapation model is to create a
SensorMote model augmented with FaultAdaptation with higher reliability due to the dynamic
adaptation of the communication link.

RC
= proc % models the environment sending a stream of events/cmds

import Common
var cmd:Event
A = initial mode

step -> A is !cmd end-step
end-mode

end-proc

Abs
= proc

parameters RC
var CurrentDaco : NodeId
Initialize = initial mode

step -> Receive is end-step
end-mode

Receive = mode
GetCmd = step -> Dispatch is ?cmd end-step
end-mode

Dispatch = mode
DR1 = step -> Receive is end-step
DR2 = step -> Receive is end-step
DR3 = step -> Receive is end-step
DR4 = step -> Receive is end-step
DR5 = step -> Receive is end-step
DR6 = step -> Receive is end-step

end-mode
end-proc

35



ABStoSensorMote
= morphism ABS -> SensorMote

parameter % the parameter refines contravariantly!
morphism ReceiveCommands -> RC
parameter
commonspec {} % Common -> Common
structure {A +-> A}

commonspec % the commonspec is covariant
{CurrentDaco +-> CurrentDaco}

structure % the natXform component, expressed contravariantly
{Initialize +-> Initialize,
Receive +-> Receive,
Dispatch +-> Dispatch,
ResetStep +-> DR1,
DetectTarget +-> DR2,
SendSensorData +-> DR3},

ABStoHeartBeatAdaption
= morphism ABS -> HeartBeatAdaption

parameter % the parameter refines contravariantly!
morphism ReceiveCommands -> RC
parameter
commonspec {} % Common -> Common
structure {A +-> A}

commonspec % the commonspec is covariant
{CurrentDaco +-> CurrentDaco}

structure % the natXform component, expressed contravariantly
{Initialize +-> Initialize,
Receive +-> Receive,
Dispatch +-> Dispatch,
ProcessHeartBeat +-> DR4,
Reconnect +-> DR5,
UpdateAlternate +-> DR6}

36



Here is the computed pushout, the composition of SensorMote and HeartBeatAdaption that
results in a new module that boths acts as a sensor and dynamically adapts its radio commu-
nication link.

ReceiveCommands
= proc % models the environment sending a stream of events/cmds

import Common
var cmd:Event
A = initial mode

step -> A is !cmd end-step
end-mode

end-proc

37



FaultAdaptiveSensorMote
= proc % obtain Common from the parameter

parameters ReceiveCommands

var CurrentDaco : NodeId
var targetCnt : Nat
var msg : string

var GotHeartBeat : Boolean
var CurrentDaco : NodeId
var AlternateDaco : NodeId
var HaveAlternateLink : Boolean

sendToDaco = proc
parameters {CurrentDaco : NodeId,

targetCnt : Nat}
end-proc

Initialize = initial mode
step -> Receive is
clockInit(Send, 2), % clock to xmit 2 ticks/sec to ch Send
targetCnt := 0,
CurrentDaco := 0, % should acquire this value
clockInit(HB,1), % clock to xmit 2 ticks/sec to ch HB
HaveAlternateLink := false

end-step
end-mode

Receive = mode
GetCmd = step -> Dispatch is ?cmd end-step
end-mode

Dispatch = mode
ResetStep = step -> Receive is
if cmd matches Init

then
targetCnt := 0
end-step

DetectTarget = step -> Receive is
if cmd matches ReceiveMsgCh12 _ % ch12?msg
then targetCnt := targetCnt + 1
end-step

SendSensorData = step -> Receive is
if cmd matches ClockEvent(Send)
then sendToDaco(CurrentDaco,targetCnt),

38



targetCnt := 0
end-step

ProcessHeartBeat: step -> Receive is
if cmd matches ReceiveMsgCh8 msg
then GotHeartBeat := true
end-step

Reconnect = step -> Receive is
if (cmd matches ClockEvent(HB)) & ~GotHeartBeat & HaveAlternateLink
then CurrentDaco := AlternateDaco,

GotHeartBeat := false,
HaveAlternateLink := false

end-step

UpdateAlternate = step -> Receive is
if cmd matches ReceiveMsgCh7(msg)
then AlternateDaco := msg,

HaveAlternateLink := true
end-step

end-mode

end-proc

39



4.2 Mission Controller

This example illustrates the architectural composition of two components (a mission controller
and a radar unit) via a connector (effectively a Remote Procedure Call mechanism). We show
how the classical concepts of architectures as components and connectors is naturally expressed
in the Espec formalism, and moreover, provides a semantically precise foundation for gaug-
ing logical properties, timing properties, and behavioral constraints. This example also shows
how the synthesis of glue code enables a dramatically broader concept of “compliance” at
composition-time. The example highlights the use of post-composition propagation to coordi-
nate the timing behavior of the system. This propagation is a key part of assessing composability
of the system - if timing guards refine to false, then the system works in no environment.

This section shows how Especs support an architectural approach to system design. Compo-
nents can be formally presented as Especs with two kinds of interfaces: (1) required services
are specified by parameter Especs that model the structure, behavior, and services that the
component expects of its context/environment, and (2) offered services are specified by Especs
that model the services provided by the component. The correctness of an open-systems com-
ponent is established by proving that the component will provide its offered services assuming
that its environment supplies the required services specified in the parameter. The protocol
of interaction between a component and its environment is specified by the component’s state
machine, which constrains the interleaving of input, internal, and output actions.

The architecture of a system is presented as a diagram of Especs in which required services are
bound to offered services by means of Espec morphisms, and the offered services of subsystems
are composed by colimit of subdiagrams.

In the following scenario, a radar unit component and a mission controller component are
composed via a generic connector that models a synchronous communication channel. The
Epoxi specifications for the components and connector model the behavior, structure, and
roles/ports for each. They are connected together by means of a diagram and composed via a
colimit of Especs.

The following specs are abridged in order to save space and focus on essentials, in particular,
the architectural structure and the correct composition with respect to timing constraints and
data-level interoperation.

40



MC-Env =
output event RadarRequest : MC-Radar-Parameters

Mission-Controller =
input event RadarResult : MC-Radar-Response 
var res : MC-Radar-Response
var parms : MC-Radar-Parameters
var mc1, mc2 : Clock = 0

mc1=50 �
mc1:=0, mc2:=0,
!radarRequest(parms) 

mc2 � 5ms

?radarResult(res)
A B

Figure 3: Mission Controller

4.2.1 Components

The main component is the mission controller. To illustrate basic features of composabil-
ity, we simply present an abstraction of the controller that interacts with the radar unit.
More details may be found in [16]. Here, the parameter Espec models the expectations that
MISSION-CONTROLLER has of its environment. In particular, it assumes

1. ability to handle a request for a radar image every 50ms (20 requests per second),

2. at most a 5ms response time between each request and the corresponding response.

A textual presentation is given below and a simplified depiction is shown in Figure 3. The
notation !m indicates the transmission of an event m and ?m indicates the reception of an event
m. Note that the program of Mission-Controller specifies the interaction of the controller with
its environment via the sequencing and timing of events. Actual mission processing activities
are abstracted away in mode A – modes denote activities, so A can refine to a submachine
carrying out extensive processing.

41



MC-parameter = espec
sort MC-Radar-Parameters

= { gain : Real,
dwell : Real Microsecond,
frequency : Real Hertz,
emission-direction : Radian }

output event RadarRequest : MC-Radar-Parameters
end-espec

Mission-Controller = espec
import MC-parameter
sort MC-Radar-Response

= { time-stamp : Real Microsecond,
detect-object? : Boolean,
object-location : Lat-Long}

input event RadarResult : MC-Radar-Response

var res : MC-Radar-Response
var parms : MC-Radar-Parameters
var mc1, mc2 : Clock

A = mode
axiom mc2 <= 5ms
AB: step -> B
mc1 = 50ms ->
mc1 := 0, mc2 := 0,
!RadarRequest(parms)

end-step
end-mode

B = mode
BA: step -> A
?RadarResponse(res)
end-step

end-mode
end-espec

42



Radar-Env =
output event RadarInfo : Radar-Response

Radar =
import Radar-Env
input event GetSignal : Radar-Parameters
var radar-parms : Radar-Parameters
var radar-result : Radar-Response
vars rc1, rc2 : Clock = 0

1ms � rc1 �
rc1 := 0, rc2 := 0, 
?GetSignal(radar-parms)

!RadarInfo(radar-result)

A B axiom  rc2 � .5ms

Figure 4: Radar Unit

A radar component accepts requests for radar sweeps and provides the processed responses.
Our specification abstracts away the actual model of radar emission as well as the processing
of the return signal. The radar requires that the environment makes requests with a time
separation of no less than 1ms (i.e. no faster than 1000Hz). In turn, it offers a .5ms response
time to each GetSignal request.

43



RADAR-Env = espec
sort Radar-Response

= { time-stamp : Real Millisecond,
detect-object? : Boolean,
object-location : Range-Bearing}

output event RadarInfo : Radar-Response
end-spec

RADAR = espec
import RADAR-Env
sort Radar-Parameters

= { gain : Real,
frequency : Real Hertz,
dwell : Real Microsecond,
emission-direction : Radian}

input event GetSignal : Radar-Parameters
var radar-parms : Radar-Parameters
var radar-result : Radar-Response
vars rc1, rc2 : Clock = 0

A = initial mode
AB: step -> B
1ms <= rc1 -> rc1 := 0, rc2 := 0, ?GetSignal(radar-parms)
end-step

end-mode

B = mode
axiom rc2 <= .5ms
BA: step -> A
!RadarInfo(radar-result)
end-step

end-mode

end-espec

44



4.2.2 Connector

In the scenario, we decide to compose the mission controller with a radar unit by means of a
connector that provides synchronized communication service with glue (data translation) both
in and out. Transmission time is specified to be at most 1ms in both directions. The connector
is specified in terms of generic types that will be refined in context. The translation functions
glue1 and glue2 are only constrained by the axiom glue. A glue-code generator is needed
to refine this spec to executable code. In many cases the data translators will be the identity
functions, in which case they can be optimized away by further transformation of the code.

Note that the transition diagram in the body of Communication-Channel specifies both the
protocol of interaction between the components that it connects, both the sequencing of shared
events and various timing properties. In words, Communication-Channel behaves as follows: it
receives a message in1 and then translates it and transmits it out as out1 no more than .001ms
later. No longer than durRP milliseconds later it expects to receive a message in2 which it
translates and sends as out2 no more than .001ms later. This pattern repeats indefinitely. The
channel itself is relatively fast - it can accommodate requests at rates up to 500KHz. When
we compose it to other components that operate at slower rates, there will be a problem of
compliance - can the respective rates be coordinated to achieve the desired behavior of the
whole system?

Note also that the Communication-Channel has two parameters. It is natural to separate the
requirements on the two components that the connector mediates.

45



CC-Env1 =
output event out1 : Out1

CommunicationChannel =
import  CC-Env1, CC-Env2
input event in1 : In1
input event in2 : In2
var m : In1
var n : In2
const durRP : Time
vars c1, c2, c3 : Clock

CC-Env2 =
output event out2 : Out2

0.002ms + durRP <= c1 �
c1 := 0, 
?in1(m)

c2 := 0,
!out1(glue1(m))

A

B

C

D axiom c1 <= .001ms

axiom c2 <= durRP

c3 := 0, 
?in2(n)

axiom c3 <= .001ms

!out2(glue2(n))

Figure 5: Communication Channel

46



CC-Env-1 = espec
sort Out1
output event out1 : Out2

end-espec

CC-Env-2 = espec
sort Out2
output event out2 : Out2

end-espec

Communication-Channel = espec
import CC-Env-1, CC-Env-2
sorts In1, in2
input event in1 : In1
input event in2 : In2
var m : In1
var n : In2
const durRP : Time

op P : In1 * Out2 -> Boolean
op Q : Out1 * In2 -> Boolean
op glue1 : In1 -> Out1
op glue2 : In2 -> Out2
axiom glue is
fa(in1:In1, out1:Out1,

in2:In2, out2:Out2)
(out1 = glue1(in1)
& Q(out1,in2)
& out2 = glue2(in2)
=> P(in1,out2))

vars c1, c2, c3 : Clock

A = initial mode % input message m
AB: step -> B

0.002ms + durRP <= c1 -> c1 := 0, ?in1(m)
end-step

end-mode

B = initial mode % output the translation of m
axiom c1 <= .001ms
BC: step -> C

c2 := 0, !out1(glue1(m))
end-step

end-mode

C = initial mode %wait for response n

47



axiom c2 <= durRP
CD: step -> D

c3 := 0, ?in2(n)
end-step

end-mode

D = initial mode % output the translation of n
axiom c3 <= .001ms
DA: step -> A

!out2(glue2(n))
end-step

end-mode

end-espec

48



Mission-Controller

MC-Env

Comm-Channel Radar

Radar-Env

p p

MC+CC+Radar

CC-Env1 CC-Env2

p p

Figure 6: Composing the Components and Connector

4.2.3 Composing the Architecture

Figure 6 shows how we interconnect the components and connector of the mission control sys-
tem in Epoxi. The new interconnection information is represented in the morphisms that bind
parameter/environment Especs to bodies of other components. In particular, since the channel
provides the environment for the Mission controller and the Radar unit, we need to develop
morphisms from Radar-Env and MC-Env to Communication-Channel. We do not discuss tech-
niques for automating the construction of these morphisms ( see [19]), but the construction is
relatively straightforward here.

The resulting colimit is the instantiated Mission-Controller operating concurrently with the
communication channel and the radar.

MCEnvToCC
= morphism : MC-Env -> Communication-Channel

commonspec { MC-Radar-Parameters +-> In1 }
structure { in1 +-> RadarRequest }

CCEnv2toMC
= morphism : CC-Env2 -> MC

commonspec { Out2 +-> MC-Radar-Parameters }
structure { RadarResult +-> out2}

RadarEnvToCC
= morphism : Radar-Env -> Communication-Channel

commonspec { Radar-Response +-> In2 }
structure { in2 +-> GetSignal}

49



CCEnv2toRadar
= morphism : CC-Env2 -> Radar

commonspec { Out1 +-> Radar-Parameters }
structure { RadarInfo +-> out1}

The generated Espec for the colimit (MC-CC-Radar) is shown in Figure 7.

Note that the types and interface to the Radar have been concretized, but the glue code is
specified but not defined.

Note also that input/output events that are identified lose their polarity and become internal
events (e.g. RadarResult).

Mission-Control-System = espec
sort MC-Radar-Response

= { time-stamp : Real Microsecond,
detect-object? : Boolean,
object-location : Lat-Long}

event RadarResult : MC-Radar-Response
sort MC-Radar-Parameters

= { gain : Real,
dwell : Real Microsecond,
frequency : Real Hertz,
emission-direction : Radian }

event RadarRequest : MC-Radar-Parameters
var parms : MC-Radar-Parameters
var mc1, mc2 : Clock

sort Radar-Parameters
= { gain : Real,

frequency : Real Hertz,
dwell : Real Microsecond,
emission-direction : Radian}

event GetSignal : Radar-Parameters
var radar-parms : Radar-Parameters
sort Radar-Response

= { time-stamp : Real Millisecond,
detect-object? : Boolean,
object-location : Range-Bearing}

event RadarInfo : Radar-Response
vars rc1, rc2 : Clock = 0
vars c1, c2, c3 : Clock

op P : MC-Radar-Parameters * MC-Radar-Response -> Boolean
op Q : Radar-Parameters * Radar-Response -> Boolean

50



Mission-Control-System =
event RadarRequest : MC-Radar-Parameters
event RadarResult : MC-Radar-Response 
event GetSignal : Radar-Parameters 
event RadarInfo : Radar-Response 
var parms : MC-Radar-Parameters 
var rr : Radar-Response 
op glue1 : MC-Radar-Parameters � Radar-Parameters 
op glue2 : Radar-Response � MC-Radar-Response 
vars mc1, mc2, c1, c2, c3, rc1, rc2 : Clock

mc1=50ms  &
0.502ms � c1 �

c1 := 0, mc1:=0, mc2:=0,
radarRequest(parms)

1ms � rc1 �
rc1 := 0, rc2 := 0, c2 := 0,

getSignal(glue1(parms))

A

B

C

D
axiom c1 � .001ms 
axiom mc2 � 5ms

axiom c2 � .5ms
axiom mc2 � 5ms
axiom  rc2 � .5ms

c3 := 0, 
RadarInfo(rr)

axiom c3 � .001ms
axiom mc2 � 5ms

radarResult(glue2(rr))

Figure 7: Colimit of Figure 6

51



op glue1 : MC-Radar-Parameters -> Radar-Parameters
op glue2 : Radar-Response -> MC-Radar-Response
axiom glue is
fa(in1:MC-Radar-Parameters, out1:Radar-Parameters,

in2:Radar-Response, out2:MC-Radar-Response)
(out1 = glue1(in1)
& Q(out1,in2)
& out2 = glue2(in2)
=> P(in1,out2))

A = initial mode
AB: step -> B

mc1 = 50ms
& 0.002ms + durRP <= c1 ->

c1 := 0, mc1 := 0, mc2 := 0,
RadarRequest(parms)

end-step
end-mode

B = initial mode
axiom c1 <= .001ms
axiom mc2 <= 5ms
BC: step -> C

1ms <= rc1 ->
c2 := 0, rc1 := 0, rc2 := 0,
GetSignal(glue1(parms))

end-step
end-mode

C = initial mode
axiom c2 <= durRP
axiom rc2 <= .5ms
axiom mc2 <= 5ms
CD: step -> D

c3 := 0, RadarInfo(radar-result)
end-step

end-mode

D = initial mode
axiom c3 <= .001ms
axiom mc2 <= 5ms
DA: step -> A

RadarResponse(glue2(radar-result))
end-step

end-mode

end-espec

52



4.2.4 Propagating Timing Constraints

When we formally compose the system, some timing incompatibilities arise. Here, the essence of
the problem is that the radar can process requests no faster than 1000Hz, but the communication
channel can send requests at rates up to 500KHz. They can work together, but we must
eliminate those behaviors of the channel that are incompatible with the radar’s service rate.
We specified that the Mission Controller issues requests at 20Hz which is easily handled by
the Radar. Suppose, for the sake of illustration, that we specified no minimum separation on
the requests of the Mission Controller. In the following, we show how to set up a Constraint
Satisfaction Problem (CSP) whose solution determines how to refine the composed system (by
strengthening the guards and axioms) to achieve compatibility of all components of the system.

A Constraint Satisfaction problem is comprised of a set of variables, each with a given initial
range of potential values, and a set of constraints that represent relationships between the
variables. The goal of our CSP formulation is to find the tightest representation for the values
of the variables that are consistent with the constraints. Another possible goal is to extract a
feasible solution - an assignment of values to variables that satisfies the constraints. However,
for this application, it is the runtime behavior of the system that does this extraction of a
feasible solution.

The variables in the timed-Espec CSP are

• for each mode m, and each clock c, a variable representing the start time values for the
clock in the mode: m-c-st;

• for each mode m, a variable representing the duration of the mode: m-dur.

In the following formulation of constraints, we are assuming for simplicity that each mode has
one incoming transition and one outgoing transition. The generalization to multiple incoming
or outgoing transitions is straightforward and not needed here. The constraints are as follows

1. m-c-st ∈ [0..max ] for each mode m and clock c, where max is some effectively infinite time
bound.

2. m-dur ∈ [0..max ] for each mode m.

3. m-dur ≤ v for each mode m with an axiom on clock c of the form c ≤ v.

4. B-c-st = v for each transition A
g�a �� B in which a has clock assignment c := v.

5. For each transition A
g�a �� B in which clock c is not reset and g has a constraint on c:

(a) B-c-st ≤ v if the guard contains c ≤ v.

(b) B-c-st = v if the guard contains c = v.

(c) B-c-st ≥ v if the guard contains c ≥ v.

53



6. B-c-st = A-c-st + A-dur for each transition A
g�a �� B in which clock c is not reset in a

and g has no constraint on c.

7. For each transition A
g�a �� B in which g has a constraint on clock c:

(a) A-c-st + A-dur ≤ v if the guard contains c ≤ v.

(b) A-c-st + A-dur = v if the guard contains c = v.

(c) A-c-st + A-dur ≥ v if the guard contains c ≥ v.

The constraint propagation process proceeds as follows. The rules above are used to interpret
the timed Espec into a CSP. Each of the generated constraints are in definite clause form
[18, 25] allowing a linear time propagation algorithm. Whenever a constraint is violated by
current variable ranges, the solver performs the least refinement of one of the ranges so that
the constraint is satisfied.

Figure 8 shows the propagation process. Column 1 lists the variables and the sucessive columns
to the right represent the staged application of rules. That is, first rules 1 and 2 are applied to
get initial ranges for the variables, shown in column 2. Then, rule 3 is applied, and so on. The
essential inference here is that the activity represented by mode A must have a duration of at
least 498µsec in order to maintain the minimum separation between requests that is required
by the Radar unit.

If the constraint propagation reveals that there are no feasible values for some clock or some
duration, then the system represented by the timed Espec is inconsistent. In other words the
components are not composable. Otherwise, the inferred information constraints on the clock
variables and mode durations help to refine the timed Espec in several ways.

1. Any inferred durations on a mode must be enforced (this is a refinement because we are
subsetting the possible durations). A straightforward mechanism for enforcement is to
add a new clock to the appropriate component so that it respects the duration constraint.
In our hypothetical example above, the Mission Controller requires a clock to time activity
A and restrict it to at least 498µsec, as in Figure 9.

2. Each guard in a transition can be simplified with respect to the inferred properties of the
clock variables and durations.

3. Eliminate any clocks that are never checked in guards.

4. Add axioms to express tighter inferred bounds on clock values and durations at modes
(effectively inverting rule 3).

5. Remove axioms that can be proved from others.

The results of applying constraint propagation and then these refinements are shown in Figure 9.
This specification of the mission controller is the minimal refinement such that the composition
with the radar unit and communication channel satisfies end-to-end timing constraints.

54



�
�
��
��
�
��

�	
�
�
��
�


�
�
��
��

�
�
��
��

�
�
��
�


�
�
��
��

�
��

��
��

�
��
�
��

�
�
	
��
�
�
	

�
��
�
��
�

�
��
�
��

�
�
	
��
�
�
	

�
��
	
��
�

�
��
�
��

�
�
�
��
�
�
�

�
��


��
�

�
��
�
��

�
�
�
��
�
�
�

�
��
��

��
�

�
��
�
��

�
�
�
��
�
�
�

�
��
�	

��
�

�
��
�
��

�
�
�
��
�
�
�

�
��

�
�

�
��
�
�
�

�
�
�
��
�
��

�
��

��
��

�
��
�
��

�
��
�

�
��
�
��
�

�
��
�
�
�

�
��
�

�
��
	
��
�

�
��
�
�
�

�
�
�
��
�
��

�
��


��
�

�
��
�
�
�

�
�
�
��
�
��

�
��
��

��
�

�
��
�
��

�
�
�
��
�
��

�
��
�	

��
�

�
��
�
��

�
�
�
��
�
��

�
��

�
�

�
��
�
�
�

�
��
�

�
��

��
��

�
��
�
�
�

�
��
�

�
��
�
��
�

�
��
�
�
�

�
��
�

�
��
	
��
�

�
��
�
�
�

�
��
�

�
��


��
�

�
��
�
�
�

�
�
�
��
�
��

�
��
��

��
�

�
��
�
�
�

�
��
�

�
��
�	

��
�

�
��
�
�
�

�
��
�

�
��

�
�

�
��
�
�
�

�
�
�
��
�
�
�

�
��

��
��

�
��
�
��

�
�
�
��
�
�
�

�
��
�
��
�

�
��
�
��

�
�
�
��
�
�
�

�
��
	
��
�

�
��
�
��

�
�
�
��
�
�
�

�
��


��
�

�
��
�
��

�
��
�

�
��
��

��
�

�
��
�
��

�
�
�
��
�
�
�

�
��
�	

��
�

�
��
�
��

�
�
�
��
�
�
�

�
��

�
�

�
��
�
�
�

�
��
�

Figure 8: Propagation of Timing Constraints

55



MC-Env =
output event RadarRequest : MC-Radar-Parameters

Mission-Controller =
input event RadarResult : MC-Radar-Response    
var res : MC-Radar-Response
var parms : MC-Radar-Parameters
var mc1, mc2 : Clock = 0

mc1 � .498ms �
mc2 := 0,
!radarRequest(parms) 

mc2  � 5ms

mc1 := 0, ?radarResult(res)
mc1 � .498ms

Figure 9: Mission Controller with minimum acceptable request separation times

The main message of this section is that after composition, we can automatically and scalably
eliminate incompatible behaviors of the components with respect to timing properties. If the
propagation process does not determine inconsistency, then we know that the components are
composable according to the architecture.

56



4.2.5 Glue-Code Generation

The colimit Mission-Control-System is an Espec for the joint action of the Mission Con-
troller, CC mechanism, and Radar unit. A fragment of it is shown below to point out the
opportunity for glue code generation. Notice that the datatypes MC-Radar-Parameters and
Radar-Parameters differ – they have the same fields, but not in the same order. Similarly,
the datatypes MC-Radar-Response and Radar-Response differ – one represents the location
of a detected object in latitute-longitude pairs, and the other represents it in relative polar
coordinates.

Mission-Control-System = espec
sort MC-Radar-Parameters

= { gain : Real,
frequency : Real Microsecond,
dwell : Real Hertz,
emission-direction : Real }

sort MC-Radar-Response
= { time-stamp : Real Millisecond,

detect-object? : Boolean,
object-location : Lat-Long}

sort Radar-Parameters
= { gain : Real,

frequency : Real Hertz,
dwell : Real Microsecond,
emission-direction : Radian}

sort Radar-Response
= { time-stamp : Real Millisecond,

detect-object? : Boolean,
object-location : Range-Bearing}

op glue1 : MC-Radar-Parameters -> Radar-Parameters
op glue2 : Radar-Response -> MC-Radar-Response
axiom glue is
fa(in1:MC-Radar-Parameters, out1:Radar-Parameters,

in2:Radar-Response, out2:MC-Radar-Response)
(out1 = glue1(in1)
& IsValidSignal (out1,in2)
& out2 = glue2(in2)
=> MC-IsValidSignal (in1,out2))

...
end-espec

A glue-code generator uses the glue axiom to generate appropriate definitions for glue1 and
glue2. The technique is to unskolemize the two underspecified operators in the glue axiom,
and then to perform constructive inference to find witnesses for the existentials [19, 4]. In

57



this case the following definitions provide a valid refinement of MC-plus-CC-plus-RADAR with
operational glue code.

Mission-Control-System = espec
...
op glue1 : MC-Radar-Parameters -> Radar-Parameters
def glue1(<g,f,d,e>) = <g,d,f,e>
op glue2 : Radar-Response -> MC-Radar-Response
def glue2(<ts,do,ol-ll>) = <ts,do,convert-polar-to-lat-long(ol-ll)>
...

end-espec

5 Concluding remarks and future work

Epoxi builds on concepts from Specware [24], overcoming its bias towards generating functional
code by supporting behavioral specifications and the generation of complex systems. Epoxi also
builds on previous efforts to model behavior logically (e.g. [8, 12]) by defining a formal notion
of composition (via colimit) and refinement (via morphisms). Epoxi represents an advance on
previous refinement methods, such as VDM and B, in a variety of ways. The categorical foun-
dations support controlled sharing of substructure, a uniform approach to datatype refinement,
and greater automated support for composition and refinement.

We believe that Evolving Specifications and their implementation in Epoxi represents ground-
breaking work in systems design. No other formalism known to us caters for the full range of
(1) precise specification of logical, temporal, and behavioral properties, (2) precise specification
of required and offered services of components and connectors, (3) precise and automatable
composition (via diagrams of Especs), (4) design-time verification of the compliance of a com-
position (by verifying that required properties are satisfied by a component’s environment), (5)
precise and mechanizable refinement of systems in a way that preserves specified properties
and produces correct-by-construction code. Moreover, as discussed in Section 3.11, the integra-
tion of both composition and refinement in Epoxi points out the need for further distinctions
in the concepts of software architecture, for example, to support the fact that environmental
assumptions refine contravariantly.

The Epoxi framework has allowed us to explore precise means for assessing composability. This
project developed techniques for formalizing (1) the compliance of a software artifact with its
specification at several levels of granularity, and (2) the compliance of a component’s environ-
ment with the services, behaviors, and properties that the component requires. The primary
measure of composability is the existence of a morphism from each required-service specification
of a system to the offered-service specifications of its environment. We also developed several
techniques for ensuring composability in the presence of semantic mismatches between parts of
a system. When there is a gap in the logical properties at an interface, we developed techniques
for generating glue code when translation is possible. When there are race-condition-like timing

58



problems between components, we developed constraint propagation techniques that eliminate
uncoordinated behaviors while preserving logical properties.

The Epoxi concepts has been demonstrated on a rich variety of systems problems. Moreover,
the foundational results obtained in this project have given rise to follow-on efforts in a variety
of directions. First, the Planware system, inspired by Especs, is being applied to the automatic
generation of high-performance scheduling codes for Theater Battle Management and other
defense applications. Second, under NSA support we are extending Especs to handle object-
oriented modeling features, essentially by allowing dynamic binding of parameters. This project
is building generators of C and Java code from Especs. Third, Especs are being used to specify
and compose features of authentication protocols. Fourth, Especs are being used as the basis
for exploring the development and application of game theory to the problems of managing
distributed agent systems. Other projects are extending Especs to support the development of
hybrid embedded systems and the automatic robustification of Java systems.

References

[1] Abadi, M., and Lamport, L. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 13, 3 (1995), 507–534.

[2] Alur, R., and Dill, D. A theory of timed automata. Theoretical Computer Science 126
(1994), 183–235.

[3] Becker, M., Gilham, L., and Smith, D. R. Planware II: Synthesis of schedulers for
complex resource systems. Tech. rep., Kestrel Technology, 2003.

[4] Burstein, M., McDermott, D., Smith, D., and Westfold, S. Derivation of glue
code for agent interoperation. Journal of Autonomous Agents and Multi-Agent Systems 6
(2003), 265–286.

[5] Durgin, N., Mitchell, J., and Pavlovic, D. A compositional logic for proving security
properties of protocols. J. of Comp. Security 11, 4 (2004), 677–721.

[6] Errington, L. Notes on diagrams and state. Tech. rep., Kestrel Institute, 2000.

[7] Goguen, J. A., and Burstall, R. M. Institutions: Abstract model theory for computer
science. Tech. Rep. CSLI-85-30, Stanford University, 1985.

[8] Gurevich, Y. Evolving algebra 1993: Lipari guide. In Specification and Validation
Methods, E. Boerger, Ed. Oxford University Press, 1995, pp. 9–36.

[9] J. Hill, et al. Tinyos: An operating system for sensor networks. Tech. rep., Dept of
EECS, Univ. California at Berkeley, 2000.

[10] J.L.Fiadeiro, and T.Maibaum. Interconnecting formalisms: supporting modularity,
reuse and incrementality. In Proc. 3rd Symposium on the Foundations of Software Engi-
neering (1995), G. Kaiser, Ed., ACM Press, pp. 72–80.

59



[11] MacLane, S. Categories for the Working Mathematician, vol. 5 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, 1971.

[12] Manna, Z., and Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, 1992.

[13] Pavlovic, D. Semantics of first order parametric specifications. In Formal Methods ’99
(1999), J. Woodcock and J. Wing, Eds., vol. 1708 of Lecture Notes in Computer Science,
Springer Verlag, pp. 155–172.

[14] Pavlovic, D., Pepper, P., and Smith, D. R. Colimits for concurrent collectors. In
Verification: Theory and Practice: Festschrift for Zohar Manna (2003), N. Dershowitz,
Ed., LNCS 2772, pp. 568–597.

[15] Pavlovic, D., and Smith, D. R. Composition and refinement of behavioral speci-
fications. In Proceedings of Automated Software Engineering Conference (2001), IEEE
Computer Society Press, pp. 157–165.

[16] Pavlovic, D., and Smith, D. R. System construction via evolving specifications. In
Complex and Dynamic Systems Architectures (CDSA 2001) (2001).

[17] Pavlovic, D., and Smith, D. R. Guarded transitions in evolving specifications. In
Proceedings of Algebraic Methods in Software Technology (AMAST) (2002), H. Kirchner
and C. Ringeissen, Eds., Springer-Verlag LNCS, pp. 411–425.

[18] Rehof, J., and Mogenson, T. Tractable constraints in finite semilattices. Science of
Computer Programming 35 (1999), 191–221.

[19] Smith, D. R. Constructing specification morphisms. Journal of Symbolic Computation,
Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571–606.

[20] Smith, D. R. Mechanizing the development of software. In Calculational System Design,
Proceedings of the NATO Advanced Study Institute, M. Broy and R. Steinbrueggen, Eds.
IOS Press, Amsterdam, 1999, pp. 251–292.

[21] Smith, D. R. Toward formal development of embedded systems. Tech. rep., Kestrel
Technology, 2002.

[22] Smith, D. R., Parra, E. A., and Westfold, S. J. Synthesis of planning and scheduling
software. In Advanced Planning Technology (1996), A. Tate, Ed., AAAI Press, Menlo Park,
pp. 226–234.

[23] Srinivas, Y. V. Refinements of parameterized algebraic specifications. In Algorithmic
Languages and Calculi, R. Bird and L. Meertens, Eds. Chapman & Hall, London, 1997.

[24] Srinivas, Y. V., and Jüllig, R. Specware: Formal support for composing software. In
Proceedings of the Conference on Mathematics of Program Construction, B. Moeller, Ed.
LNCS 947, Springer-Verlag, Berlin, 1995, pp. 399–422.

[25] Westfold, S., and Smith, D. Synthesis of efficient constraint satisfaction programs.
Knowledge Engineering Review 16, 1 (2001), 69–84. (Special Issue on AI and OR).

60




